Find the angle to intersection of the following curves :
x2 + y2 – 4x – 1 = 0 and x2 + y2 – 2y – 9 = 0
Given:
Curves x2 + y2 – 4x – 1 = 0 ...(1)
& x2 + y2 – 2y – 9 = 0 ...(2)
First curve is x2 + y2 – 4x – 1 = 0
⇒ x2 – 4x + 4 + y2 – 4 – 1 = 0
⇒ (x – 2)2 + y2 – 5 = 0
Now ,Subtracting (2) from (1),we get
⇒ x2 + y2 – 4x – 1 – ( x2 + y2 – 2y – 9) = 0
⇒ x2 + y2 – 4x – 1 – x2 – y2 + 2y + 9 = 0
⇒ – 4x – 1 + 2y + 9 = 0
⇒ – 4x + 2y + 8 = 0
⇒ 2y = 4x – 8
⇒ y = 2x – 4
Substituting y = 2x – 4 in (3),we get,
⇒ (x – 2)2 + (2x – 4)2 – 5 = 0
⇒ (x – 2)2 + 4(x – 2)2 – 5 = 0
⇒ (x – 2)2(1 + 4) – 5 = 0
⇒ 5(x – 2)2 – 5 = 0
⇒ (x – 2)2 – 1 = 0
⇒ (x – 2)2 = 1
⇒ (x – 2) = ±1
⇒ x = 1 + 2 or x = – 1 + 2
⇒ x = 3 or x = 1
So ,when x = 3
y = 2×3 – 4
⇒ y = 6 – 4 = 2
So ,when x = 3
y = 2×1 – 4
⇒ y = 2 – 4 = – 2
The point of intersection of two curves are (3,2) & (1, – 2)
Now ,Differentiating curves (1) & (2) w.r.t x, we get
⇒ x2 + y2 – 4x – 1 = 0
⇒ 2x + 2y.4 – 0 = 0
⇒ x + y.2 = 0
⇒ y. = 2 – x
...(3)
⇒ x2 + y2 – 2y – 9 = 0
⇒ 2x + 2y.2
0 = 0
⇒ x + y.0
⇒ x + (y – 1)0
⇒ ...(4)
At (3,2) in equation(3),we get
m1
At (3,2) in equation(4),we get
= – 3
m2
= – 3
when m1 & m2 = 0
tanθ
tanθ
tanθ
tanθ = 7
θ = tan – 1(7)
θ≅81.86