Use a suitable identity to get each of the following products.
(i) ![]()
(ii) ![]()
(iii) ![]()
(iv) ![]()
(v) ![]()
(vi) ![]()
(vii)![]()
(viii)![]()
(ix) ![]()
(x) ![]()
(i) Using Identity (a + b)2 = a2 + 2ab + b2
![]()
In the given expression a = x, b = 3
On substituting these values in the above identity, we get
![]()
![]()
(ii) Using Identity (a + b)2 = a2 + 2ab + b2
![]()
In the given expression a = 2y, b = 5
On substituting these values in the above identity, we get
![]()
![]()
(iii) Using Identity (a - b) 2 = a2 - 2ab + b2
![]()
In the given expression a = 2a, b = 7
On substituting these values in the above identity, we get
![]()
![]()
(iv) Using Identity (a - b)2 = a2 - 2ab + b2
![]()
In the given expression a = 3a, b = 1/2
On substituting these values in the above identity, we get
![]()
![]()
(v) Using Identity (a + b)(a - b) = a2 - b2
![]()
In the given expression a = 1.1m, b = 0.4
On substituting these values in the above identity, we get
![]()
![]()
(vi) Using Identity (a + b)(a - b) = a2 - b2
![]()
In the given expression a = b2, b = a2
On substituting these values in the above identity, we get
![]()
![]()
(vii) Using Identity (a + b)(a - b) = a2 - b2
![]()
In the given expression a = 6x, b = 7
On substituting these values in the above identity, we get
![]()
![]()
(viii)Using Identity (a - b) 2 = a2 - 2ab + b2
On substituting these values in the above identity, we get
![]()
![]()
(ix) Using Identity (a + b) 2 = a2 + 2ab + b2
![]()
In the given expression a = ![]()
On substituting these values in the above identity, we get
![]()
![]()
(x) Using Identity (a - b) 2 = a2 - 2ab + b2
![]()
In the given expression a = ![]()
On substituting these values in the above identity, we get
![]()
![]()