Simplify.
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)(m2 - n2m) 2 + 2m3n2
(viii)
(i) Using Identity (a - b) 2 = a2 - 2ab + b2
In the given expression a =
On substituting these values in the above identity, we get
(ii)
Using Identity a2 - b2 = (a + b)(a - b)
In the given expression a =
On substituting these values in the above identity, we get
(iii)
Using Identity (a - b)2 = a2 - 2ab + b2 for finding the value of
In the given expression a =
On substituting these values in the above identity, we get
⇒ ………………………………………………..(i)
Using Identity (a + b) 2 = a2 + 2ab + b2 for finding the value of
In the given expression a =
On substituting these values in the above identity, we get
⇒ ………………………………………………..(ii)
On Adding equations (i) and (ii), we get
(iv)
Using Identity (a + b) 2 = a2 + 2ab + b2 for finding the value of
In the given expression a =
On substituting these values in the above identity, we get
⇒ ………………………………………………..(i)
Using Identity (a + b) 2 = a2 + 2ab + b2 for finding the value of
In the given expression a =
On substituting these values in the above identity, we get
⇒ ………………………………………………..(ii)
On Adding equations (i) and (ii), we get
(v)
Using Identity (a - b) 2 = a2 - 2ab + b2 for finding the value of
In the given expression a =
On substituting these values in the above identity, we get
⇒ ………………………………………………..(i)
Using Identity (a - b) 2 = a2 - 2ab + b2 for finding the value of
In the given expression a =
On substituting these values in the above identity, we get
⇒ ………………………………………………..(i)
On Subtracting equations (ii) from (i), we get
(vi)
Using Identity (a + b)2 = a2 + 2ab + b2 for finding the value of
In the given expression a =
On substituting these values in the above identity, we get
⇒ ………………………………………………..(i)
On Subtracting from (i), we get
(vii) (m2 - n2m)2 + 2m3n2
Using Identity (a - b) 2 = a2 - 2ab + b2 for finding the value of
In the given expression a =
On substituting these values in the above identity, we get
⇒ ………………………………………………..(i)
On Subtracting from (i), we get
(viii)
Using Identity (a - b) 2 = a2 - 2ab + b2 for finding the value of
In the given expression a =
On substituting these values in the above identity, we get
⇒ ………………………………………………..(i)
On Adding in eqn (i), we get
First Find the value of RHS
Using Identity (a + b) 2 = a2 + 2ab + b2 for finding the value of
In the given expression a =
On substituting these values in the above identity, we get
⇒ ………………………………………………..(ii)
Therefore from eqn (i) and equ (ii) we found that LHS = RHS