Solve each of the following system of equations in R.
Subtracting 6 from both the sides, we get–
|x–1|+|x–2|+|x–3|–6≥0
Here, we have 4 cases:
Case 1: –∞ <x<1
For this case, |x–1|=–(x–1), |x–2|=–(x–2) and |x–3|=–(x–3)
⇒ –(x–1+x–2+x–3+6)≥0
⇒ x–1+x–2+x–3+6<0
⇒ 3x<0
⇒ x<0
⇒ xϵ (–∞ , 0) …(1)
Case 2:1<x<2
For this case, |x–1|=x–1, |x–2|=–(x–2) and |x–3|=–(x–3)
⇒ x–1–x+2–x+3–6≥0
⇒ –x–2≥0
⇒ x+2<0
⇒ x<–2
Which doesn’t signify the interval
Case 3:2<x<3
For this case, |x–1|=x–1, |x–2|=x–2 and x–3=–(x–3)
⇒ x–1+x–2–x+3–6≥0
⇒ x–6≥0
⇒ x≥ 6
Which doesn’t signify the interval
Case 4:3<x<∞
For this case, |x–1|=x–1, |x–2|=x–2 and |x–3|=x–3
⇒ x–1+x–2+x–3–6≥0
⇒ x–1+x–2+x–3–6≥0
⇒ 3x–12>0
⇒ x>4
⇒ xϵ (4 , ∞ ) …(2)
⇒ x ϵ (–∞ , 0)⋃ (4 , ∞ ) (from 1 and 2)
We can verify the answers using graph as well.