For three sets A, B, and C, show that
A ⊂ B C – B ⊂ C – A
Given: A ⊂ B
To show: C–B ⊂ C–A
Let x ϵ C– B
⇒ x ϵ C and x ∉ B [by definition C–B]
⇒ x ϵ C and x ∉ A
⇒ x ϵ C–A
Thus x ϵ C–B ⇒ x ϵ C–A. This is true for all x ϵ C–B.
C – B ⊂ C – A.