For any two sets A and B, prove that
(A – B) ∪ (A ∩ B) = A
Let x ϵ A
Then either x ϵ (A–B) or x ϵ (A ∩ B)
⇒ x ϵ (A–B) ∪ (A ∩ B)
∴ A ⊂ (A – B) ∪ (A ∩ B)….(1)
Consverly,
Let x ϵ (A–B) ∪ (A ∩ B)
⇒ x ϵ (A–B) or x ϵ (A ∩ B)
⇒ x ϵ A and x ∉ B or x ϵ B
⇒ x ϵ A
∴ (A–B) ∪ (A ∩ B) ⊂ A……….(2)
∴ From (1) and (2), We get
(A–B) ∪ (A ∩ B) =A