In any triangle ABC, prove the following:
b sin B – c sin C = a sin (B – C)
Let a, b, c be the sides of any triangle ABC. Then by applying the sine rule, we get
⇒c = k sin C
Similarly, b = k sin B
And a = k sin A
Here we will consider LHS, so we get
LHS = b sin B – c sin C
Substituting corresponding values in the above equation, we get
⇒ = k sin B sin B –k sin C sin C
⇒ = k (sin2 B – sin2 C )……….(ii)
But,
Substituting the above values in equation (ii), we get
⇒ = k(sin(B + C) sin(B - C))
But A + B + C = π⇒ B + C = π –A, so the above equation becomes,
⇒ = k(sin(π –A) sin(B - C))
But sin (π - θ) = sin θ
⇒ = k(sin(A) sin(B - C))
From sine rule, a = k sin A, so the above equation becomes,
⇒ = a sin(B - C) = RHS
Hence proved