In any triangle ABC, prove the following:
a2 (cos2 B – cos2 C) + b2 (cos2 C – cos2 A) + c2 (cos2 A – cos2 B) = 0
Let a, b, c be the sides of any triangle ABC. Then by applying the sine rule, we get
⇒ a = k sin A, b = k sin B, c = k sin C
Here we will consider LHS, so we get
LHS = a2 (cos2 B – cos2 C) + b2 (cos2 C – cos2 A) + c2 (cos2 A – cos2 B)
Substituting corresponding values from sine rule in above equation, we get
= (k sin A)2 (cos2 B – cos2 C) + (k sin B)2 (cos2 C – cos2 A) + (k sin C)2 (cos2 A – cos2 B)
= k2(sin2A cos2 B – sin2A cos2 C + sin2B cos2 C – sin2B cos2 A + sin2A cos2 A – sin2A cos2 B)
Cancelling the like terms, we get
LHS = 0 = RHS
Hence proved