In any triangle ABC, prove the following:

a cos A + b cos B + c cos C = 2b sin A sin C = 2c sin A sin B

Let a, b, c be the sides of any triangle ABC. Then by applying the sine rule, we get



a = k sin A, b = k sin B, c = k sin C


So the LHS of the given equation, we get


LHS = a cos A + b cos B + c cos C


Substituting values from sine law, we get


= k sin A cos A + k sin B cos B + k sin C cos C







( π = A + B + C)






Now, from sine rule,


k sin C = c


Putting this value in equation (i), we get


LHS = 2c sin A sin B


And also k sin B = b (from sine rule)


Putting this in equation (i), we get


LHS = 2b sin A sin C


Hence LHS = RHS


i.e., a cos A + b cos B + c cos C = 2b sin A sin C = 2c sin A sin B


Hence proved


22