prove that:

sin2(n + 1)A – sin2nA = sin(2n + 1)A sinA

We know that sin2A – sin2B = sin(A +B) sin(A –B)


HereA =(n + 1)A And B = nA


LHS: sin2(n + 1)A – sin2nA = sin((n + 1)A + nA) sin((n + 1)A – nA)


= sin(nA +A + nA) sin(nA +A – nA)


= sin(2nA +A) sin(A)


= sin(2n + 1)A sinA = RHS


Hence proved.


15