RD Sharma - Mathematics

Book: RD Sharma - Mathematics

Chapter: 7. Values of Trigonometric Functions at Sum of Difference of Angles

Subject: - Class 11th

Q. No. 16 of Exercise 7.1

Listen NCERT Audio Books to boost your productivity and retention power by 2X.

16

Prove that:

sin2B = sin2A + sin2(A-B) – 2sinA cosB sin(A-B)

RHS = sin2A + sin2(A -B) – 2 sinA cosB sin(A -B)


= sin2A + sin(A -B) [sin(A –B) – 2 sinA cosB]


We know that sin(A –B) = sinA cosB – cosA sinB


= sin2A + sin(A -B) [sinA cosB – cosA sinB – 2 sinA cosB]


= sin2A + sin(A -B) [-sinA cosB – cosA sinB]


= sin2A - sin(A -B) [sinA cosB + cosA sinB]


We know that sin(A +B) = sinA cosB + cosA sinB


= sin2A – sin(A –B) sin(A +B)


= sin2A – sin2A + sin2B


= sin2B = LHS


Hence proved.


Chapter Exercises

More Exercise Questions

6

If SinA = 1/2, cosB = , where π/2<A < π And 0 <B < π/2, find the following:

(i) tan(A +B)(ii) tan(A -B)