RD Sharma - Mathematics

Book: RD Sharma - Mathematics

Chapter: 7. Values of Trigonometric Functions at Sum of Difference of Angles

Subject: - Class 10th

Q. No. 30 of Exercise 7.1

Listen NCERT Audio Books - Kitabein Ab Bolengi

30

If sin α sin β - cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.

Given sin α sin β – cos α cos β + 1 = 0


-(cos α cos β – sin α sin β) + 1 = 0


We know that cos(A +B) = cosA cosB - sinA sinB


-cos(α + β) + 1 = 0


cos(α + β) = 1


We know that sin θ = √(1 – cos2 θ)


sin(α + β) = 0 …(1)


Consider 1 + cot α tan β,




We know that sin(A ±B) = sinA cosB ± cosA sinB



= 0 = RHS


Hence, proved.


30

Chapter Exercises

More Exercise Questions

6

If SinA = 1/2, cosB = , where π/2<A < π And 0 <B < π/2, find the following:

(i) tan(A +B)(ii) tan(A -B)