Find the equation of an ellipse whose axes lie along the coordinates axes, which passes through the point (- 3, 1) and has eccentricity equal to
.
Given that we need to find the equation of the ellipse whose eccentricity is
and passes through (- 3,1).

Let us assume the equation of the ellipse is
- - - - (1) (a2>b2).
We know that eccentricity of the ellipse is ![]()
⇒ ![]()
⇒ ![]()
⇒ 5a2 - 5b2 = 2a2
⇒ 5b2 = 3a2
⇒
..... - - - (2)
Substituting the point (- 3,1) in (1) we get,
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ 5b2 = 32
⇒ ![]()
From (2),
⇒ ![]()
⇒ ![]()
The equation of the ellipse is
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ 3x2 + 5y2 = 32
∴ The equation of the ellipse is 3x2 + 5y2 = 32.