Two opposite vertices of a square are (- 1, 2) and (3, 2). Find the coordinates of other two vertices.
Given that A(- 1, 2) and C(3, 2) are the opposite vertices of a square.
Let us assume the other two vertices be B(x1, y1) and D(x2, y2) and the midpoint be M
We know that midpoint of AC = Midpoint of BD = M
⇒ M = (1, 2)
⇒ x1 + x2 = 2 ..... (1)
⇒ y1 + y2 = 4 ..... (2)
We know that lengths of the sides of the square are equal.
AB = BC = CD = DA.
We know that distance between two points (x1, y1) and (x2, y2) is
⇒ AB = BC
⇒ AB2 = BC2
⇒ (x1 - (- 1))2 + (y1 - 2)2 = (x1 - 3)2 + (y1 - 2)2
⇒ x12 + 1 + 2x1 + y12 + 4 - 4y1 = x12 - 6x1 + 9 + y12 + 4 - 4y1
⇒ 8x1 = 8
⇒ x1 = 1 ..... (3)
From (1)
⇒ x2 = 2 - 1 = 1 ..... (4)
We know that points ABC form right angled isosceles triangle.
We have AB2 + BC2 = AC2
⇒ 2AB2 = (- 1 - 3)2 + (2 - 2)2
⇒ 2((1 - (- 1))2 + (y1 - 2)2) = (- 4)2 + (0)2
⇒ 2(22 + (y1 - 2)2) = 8
⇒ 4 + (y1 - 2)2 = 8
⇒ (y1 - 2)2 = 4
⇒ y1 - 2 = ±2
⇒ y1 = 2 - 2 (or) y1 = 2 + 2
⇒ y1 = 0 (or) y1 = 4
From (2)
⇒ y2 = 4 - 0
⇒ y2 = 4
⇒ y2 = 4 - 4
⇒ y2 = 0
It is clear that the other two points are (1, 0) and (1, 4).
∴ The other two points are (1, 0) and (1, 4).