If f :R → R is defined by f (x) = x2 – 3x + 2, write f (f (x)).
We have,
f(x) = x2 – 3x + 2
∴ f(f(x)) = f (x2 – 3x + 2)
= (x2 – 3x + 2)2 – 3(x2 – 3x + 2) + 2
= x4 + 9x2 + 4 – 6x3 – 12x + 4x2 – 3x2 + 9x – 6 + 2
= x4 – 6x3 + 10x2 – 3x
⇒ f(f(x)) = x4 – 6x3 + 10x2 – 3x