Let f : [2, ∞) → R be the function defined by f (x) = x2–4x+5, then the range of f is
Given that, f (x) = x2–4x+5
Let f(x) = y
⇒ y = x2–4x+5
⇒ y = x2–4x+4+1
⇒ y = (x-2)2+1
⇒ y-1 = (x-2)2
⇒ (x-2)2= y-1
⇒
⇒
Now, if f is real valued function then
⇒ y-1 ≥ 0
⇒ y ≥ 1
∴ the range of f is [1, ∞).