If P(A) = 2|5, P(B) = 3|10 and P(A ∩ B) = 1|5, the P(A′|B′).P(B′|A′) is equal to
We have,
P(A’|B’) × P(B’) = P(A’ ∩ B’)
…(i)
P(B’|A’) × P(A’) = P(B’ ∩ A’)
…(ii)
On multiplying eq. (i) and (ii), we get
[∵P(A’ ∩ B’) = P[(A ∪ B)’]= 1 – P(A ∪ B)]
[Additive law of Probability]
Hence, the correct option is C