If A and B are two events and A ≠ θ, B ≠ θ, then
Given: A ≠ φ, B ≠φ
CASE 1: If we take option (A) i.e. P(A|B) = P(A).P(B)
LHS =
CASE 2: If we take option (B) i.e.
this is true, we all know that this is conditional probability.
CASE 3: If we take option C .i.e. P(A|B)×P(B|A) = 1
LHS = P(A|B) × P(B|A)
≠ RHS
Hence, the correct option is B