Show that the lines
and intersect.
Also, find their point of intersection.
We are given with lines,
Let these lines be L1 and L2, such that
Where λ, μ ∈ ℝ
We need to show that lines L1 and L2 intersect.
In order to show this, let us find out any point on line L1 and line L2.
For line L1:
We need to find the values of x, y and z. So,
Take .
⇒ x – 1 = 2λ
⇒ x = 2λ + 1
Take .
⇒ y – 2 = 3λ
⇒ y = 3λ + 2
Take .
⇒ z – 3 = 4λ
⇒ z = 4λ + 3 …(i)
∴, any point on line L1 is (2λ + 1, 3λ + 2, 4λ + 3).
For line L2:
We need to find the values of x, y and z. So,
Take .
⇒ x – 4 = 5μ
⇒ x = 5μ + 4
Take .
⇒ y – 1 = 2μ
⇒ y = 2μ + 1
Take
⇒ z = μ …(ii)
∴, any point on line L2 is (5μ + 4, 2μ + 1, μ).
Since, if line L1 and L2 intersects then there exists λ and μ such that,
(2λ + 1, 3λ + 2, 4λ + 3) ≡ (5μ + 4, 2μ + 1, μ)
⇒ 2λ + 1 = 5μ + 4 …(iii)
3λ + 2 = 2μ + 1 …(iv)
4λ + 3 = μ …(v)
Substituting value of μ from equation (v) in equation (iv), we get
3λ + 2 = 2(4λ + 3) + 1
⇒ 3λ + 2 = 8λ + 6 + 1
⇒ 3λ + 2 = 8λ + 7
⇒ 8λ – 3λ = 2 – 7
⇒ 5λ = -5
⇒ λ = -1
Putting λ = -1 in equation (v), we get
4(-1) + 3 = μ
⇒ μ = -4 + 3
⇒ μ = -1
To check, put λ = -1 and μ = -1 in equation (iii),
2(-1) + 1 = 5(-1) + 4
⇒ -2 + 1 = -5 + 4
⇒ -1 = -1
∴, λ and μ also satisfy equation (iii).
So, z-coordinate from equation (i),
z = 4λ + 3
⇒ z = 4(-1) + 3 [∵, λ = -1]
⇒ z = -4 + 3
⇒ z = -1
And z-coordinate from equation (ii),
z = μ
⇒ z = -1 [∵, μ = -1]
So, the lines intersect.
Their point of intersection is (5μ + 4, 2μ + 1, μ) = (5(-1) + 4, 2(-1) + 1, -1)
Or (5μ + 4, 2μ + 1, μ) = (-5 + 4, -2 + 1, -1)
Or (5μ + 4, 2μ + 1, μ) = (-1, -1, -1)
Thus, the given lines intersect, and the point of intersection is (-1, -1, -1).