Solve : 3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
As, cos 2x = 1 – 2sin2 x and sin 2x = 2sin x cos x
∴ 3 – 2cos x – 4sin x – (1 – 2sin2 x) + 2sin x cos x = 0
⇒ 2sin2 x – 4sin x + 2 – 2cos x + 2sin x cos x = 0
⇒ 2(sin2 x – 2sin x + 1) + 2cos x(sin x – 1) = 0
⇒ 2(sin x – 1)2 + 2cos x(sin x – 1) = 0
⇒ (sin x – 1)(2cos x + 2sin x – 2) = 0
∴ sin x = 1 or sin x + cos x = 1
When, sin x = 1
We have,
sin x = sin π/2
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z
∴
When, sin x + cos x = 1
∴ { dividing by √2 both sides}
⇒ { ∵
}
⇒ { ∵ cos A cos B + sin A sin B = cos (A - B)}
If cos x = cos y, implies x = 2mπ ± y, where m ∈ Z
∴
∴
⇒
Hence,