Express the following complex numbers in the form
1 – sin α + i cos α
Given Complex number is z=1-sin+icos
We know that sin2θ+cos2θ=1, sin2θ=2sinθcosθ, cos2θ=cos2θ-sin2θ.
⇒
⇒
e know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
We know that sine and cosine functions are periodic with period 2
Here We have 3 intervals as follows:
(i)
(ii)
(iii)
Case(i):
In the interval ,
and also
so,
⇒
⇒
⇒
⇒ .(∵ θ lies in 1st quadrant)
∴ The polar form is .
Case(ii):
In the interval ,
and also
so,
⇒
⇒
⇒
⇒
⇒ . (∵ θ lies in 4th quadrant)
⇒
∴ The polar form is .
Case(iii):
In the interval ,
and also
so,
⇒
⇒
⇒
⇒
⇒ .(since θ presents in first quadrant and tan’s period is
)
⇒ .
∴ The polar form is .