Express the following complex numbers in the form ![]()

Given complex number is ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
We know that i2=-1
⇒ ![]()
⇒ ![]()
⇒ ![]()
We know that the polar form of a complex number Z=x + iy is given by Z=|Z|(cos θ+ i sin θ)
Where,
|Z|=modulus of complex number![]()
θ = arg(z)=argument of complex number![]()
Now for the given problem,
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ 
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
Since x<0,y<0 complex number lies in 3rd quadrant and the value of θ will be as follows -1800≤θ≤-900.
⇒ ![]()
⇒
.
⇒ ![]()
⇒ ![]()
∴ The Polar form of
is
.