If z1 and z2 are two complex number such that |z1| = |z2| and arg (z1) + arg (z2) = π, then show that
Given:
⇒ |z1|=|z2| and arg(z1)+arg(z2)=
Let us assume arg(z1)=θ
⇒ arg(z2)=-θ
We know that z=|z|(cosθ+isinθ)
⇒ z1=|z1|(cosθ+isinθ)-----------------(1)
⇒ z2=|z2|(cos(-θ)+isin(
-θ))
⇒ z2=|z2|(-cosθ+isinθ)
⇒ z2=-|z2|(cosθ-isinθ)
Now we find the conjugate of z2
⇒ =-|z2|(cosθ+isinθ) (∵
)
Now,
⇒
⇒ (∵ |z1|=|z2|)
⇒ z1=-
∴ Thus proved.